
the change in the parameters when the soil withstands tensile stresses ~o = --0.2. Loss of 
continuity was not taken into account in formulating the problem. 

The solution obtained shows that the laws of wave--barrier interaction depend importantly 
on both the plastic and the viscous properties of the medium. Viscosity leads to broadening 
of the reflected and transmitted waves and the barrier load and modifies their profile, at 
the same time reducing the maxima of the barrier load and acceleration. 
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STRESSES IN THE ZONE OF THE WETTING LINE AND THE DYNAMIC 

RESISTANCE OF THE MENISCUS 

B. V. Zheleznyi and A. G. Nikiforov UDC 532.68 

INTRODUCTION 

The use of the usual "condition of adhesion" of a liquid to a solid surface in the analy- 
sis of the flow in the zone of the line of solid/liquid/gas three-phase contact (LTC) leads 
to a solution with mathematical singularities at the line of three-phase contact [i]. Remain- 
ing within the framework of the continuum mechanics of a liquid, these singularities can be 
eliminated either by renouncing the condition of adhesion for the zone of the line of three- 
phase contact or by assuming that the solid surface near the meniscus is covered with a poly- 
molecular (liquid) film, so that the line of three-phase contact, as such, is absent (there 
is no "wetting line," but only a finite extension of the transitional region between the men- 
iscus and a film of homogeneous thickness). In the latter case, the condition of adhesion 
can be used. 

The problem of the motion of the meniscus with the presence of a liquid film on the wall 
is formulated in [2, 3]. The difference between the "departing" and "arriving" menisci is 
connected with the fact that, in the first case, the mean thickness h, of the film (remaining 
on the wall) is determined by the velocity of the meniscus v, while, in the second case, the 
thickness h, of the film ahead of the meniscus can be given arbitrarily. In the case of the 
presence of an additional independent variable (h,), the case of an arriving meniscus is math- 
ematically more complicated. 

The principal practical problem, solvable for a departing meniscus, is to find the de- 
pendence h,(v), while, for an arriving meniscus, it is to find the effective hydrodynamic re- 
sistance. The first problem was solved in [2], taking account of the specific thermodynamic 
and rheological properties of "thin" films, while the second problem was solved in [3] for 
the case of rather "thick" films having the properties of a volumetric liquid. In the latter 
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case, the dependence ~(v) was found, where ~ is the relative radius of curvature of the men- 
iscus. 

The present article gives the results of an analysis of the flow in the transitional 
zone from the departing meniscus to a "thin" film, made within the framework of a method 
described in [2]. Two questions are discussed: the distribution of the stresses in the tran- 
sitional zone and the effective dynamic resistance of the meniscus. The notation and term- 
inology introduced in [2] are used here also. 

w In the approximation of flat films under consideration, two kinds of stresses, 
arising in the flow, are significant: the pressure gradient G in the direction of the flow 
(the x axis) and the tangential stress To at the wall. The distributions of both stresses 
along the x axis can be found if the profile of the transitional zone from the meniscus to 
the film is known. For the models of films considered in [2], the value of G can be repre- 
sented in the form 

=r . I f  LR3,  1/gj ) V Y; (t + - f ) } ,  (1.1) 
where v = i for a stable-film model and ~ = --i for an unstable-film model. 

In [i], the problem was solved for a capillary of radius R; however, the statement and 
solution of the problme remain valid also for systems of more complex geometry if the menis- 
cus moves in the direction x, perpendicular to the wetting line, and the condition R s >> R m 
holds. Here R s and R m are, respectively, the radii of curvature of the solid surface and 
the meniscus in the plane of a meridional cross section (perpendicular to the wetting line). 
By R, in the general case, there must be understood the distance from the solid surface to 
the center of a circle (of radius Rm) , inscribed in the central part of the meridional cross 
section of the meniscus. Between the meniscus and the film there is a transitional zone 
where the radius of curvature'varies smoothly from ~R s to T m. 

In the square brackets in (i.i) there is separated out the dimensional part, determined 
only by the value of R and the equilibrium parameters of the system. The dependence of G on 
the velocity is included in the dimensionless part (in curly brackets), determined by the 
value of the parameters a and ~ and the concrete model of the film (the latter determines the 
value of W and the value of the coefficient C(a, ~) for given values of a and ~; the method 
of obtaining W is given in [2]). 

The value of G is constant in a given cross section of a flat film (perpendicular to the 
x axis); the value of the tangential stress T at a distance z from the "free" surface of the 
film (at which it is assumed that there is no tangential stress) is equal to T = Gz. The 
maximal value of T = To in a given cross section is attained at the wall and is equal to Gh, 
where h is the thickness of the film in the given cross section. Analogously to (i.i), we 
have 

n =  L ] + t (  ~ y t 

where the square and curly brackets include, respectively, the,:dimensional and dimensionless 
parts of the expression. 

Expressions (i.i) and (1.2) do not contain x explicitly; however, in actuality, they ex- 
press the distribution of the stresses along the x axis, since y is a function of x. From 
(i.i) and (1.2) it follows that for certain values of y, maximal values (G m and Tm) of the 
stresses G and To in the transitional zone are attained. Specifically, for ~ = 0 (a standard 
film), G m is attained for y = 1.5 and T m for y = 2. Examples of the distributions of G and 
To along the x axis for a standard stable film with n = 3 are given in Figs. 1 and 2, which 
present the dimensionless parts (notation G, and r,) of expressions (I.i) and (1.2) for three 
values of the dimensionless velocity: V = 0.i, i, and i0, curves 1-3, respectively). These 
distributions were obtained as a result of an analysis of integral curves of y(x) for the 
corresponding partial solutions. 

For convenience in comparison of the distributions, the scale along the axis of abscis- 
sas in Figs. 1-4 was taken differently from the scale of the variable x used in [2]; the di- 
mensionless coordinate X = (0.643R/ho) I/2~/h,; the start of the reckoning along the X axis 
was taken to correspond to the level y = 2, 

516 



" .- 0~2 

1 ~ - T ' - -  

- g  - f  o f 2 X 

Fig. 2 

T 
-~ --2 0 2 4 .,,. 

f 5  

J 

8 

G 

4. 

o 

Fig. 1 

/ I  

2 

x o 

Fig. 3 Fig. 4 

Figure 3 gives the profile of the transitional zone from the meniscus to the film for 
the model under consideration for the three values of the velocity given above. The actual 
"flatness" of the film (dh/dl) can be evaluated from the curve in Fig. 3 using the relation- 
ship dh/d~ = ~ho/O.643R.dy/dX. Points corresponding to a value of dy/dX = 3 are denoted in 
Fig. 3 by a circle. This value of dy/dX corresponds to a value dh/dl on the order of 0.i in 
a capillary of radius ~i0 ~m and, correspondingly, to lower values of dh/dZ and wider capil- 
laries. The arrows in Fig. 3 indicate the level at which the second derivative y" attains 
99% of its limiting value. From a comparison between Fig. 3 and Figs. 1 and 2, it follows 
that the maximal stresses develop precisely in the region of flatness; the approximation of 
a flat film is the better,the less the value of V and the greater the value of R~ 

By Gp and rp we denote the pressure gradient and the stress at the wall for unperturbed 
Poiseuille flow in a cylindrical capillary at some distance from the meniscus. The ratios 
of the stresses in the transitional zone corresponding to these stresses are 

G/C~ = O,155(B /ho)2G,/V; (1.3) 

T0/Tp = 0.484BT,/hoV, (1.4) 

where G, and T, are the dimensionless parts of the expressions (I.i) and (1.2). From (1.3) 
and (1.4) it follows that the stresses developed in the transitional zone can exceed by many 
orders of magnitude the stresses arising in the flow of liquid far from the meniscus. 

Figure 5 gives the dependence of V on the dimensionless parts (G, -- 1 and of 
the maximal stresses (G m and Tm) in the transitional zone for the samemmodel of ~*m-- 2) a stable 
film, from which it can be seen that, with a rise in the velocity of the meniscus, the value 
of T m rises monotonically, while the value of G m passes through a flat maximum. As V § O, in 
the case of a stable film the profile of a thermodynamically equilibrium meniscus is attained 
(it practically coincides with the profile for V = 0.i in Fig. 3); under these circumstances 
G § 0 and T § O, which can be seen in Figs. J and 2. 

The case of an unstable film is qualitatively different. Here a thermodynamically equi- 
librium meniscus is also attained as V ~ 0 and corresponds to zero stresses. However, this 
takes place for velocities less than the critical wetting velocity (Vo), where a finite de- 
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parting contact angle is attained and the surface behind the meniscus remains "dry." In this 
case the approximation of a flat film becomes incorrect. With an approach to Vo from the 
side of large velocities, the stresses in the flat part of an unstable film rise unboundedly, 
which follows from (i.i) and (1.2): G § = and To § ~ as W § Wo, since C(~, ~) § 0. 

An unbounded rise of the stresses in the zone of the line of three-phaGe =ontact is gen- 
erally characteristic for motion over a "dry" surface [i]; however, within the framework of 
the effect under consideration, this effect is inseparably connected with the special thermo- 
dynamic characteristics of a thin unstable film. We note that the assumption of the possi- 
bility of slip of the liquid along a lyophohic solid surface in this case does not eliminate 
the effect of a catastrophic rise in the stresses. In turn, large tangential stresses at the 
wall in the zone of the line of three-phase contact should lead to a clear effect of slipping 
of the liquid with the motion of an arriving meniscus over a lyophobic surface; an analysis 
of existing literature on the critical wetting velocity confirms this point of view. We note 
that under ordinary flow conditions, for example, for Poiseuille flow having a mean velocity 
equal to the velocity of the meniscus, the slip may be completely inappreciable. This is 
connected, above all, with the smallness of the tangential stresses at the wall for Poiseuille 
flow far from the meniscus. 

w The effective or additional dynamic resistance of the meniscus (p) can be deter- 
mined in different ways. The usual method of expressing p in terms of the contact angle e is 
convenient for e > 0 and, in practice, is sufficiently exact, since appreciable deviations of 
the curvature of the meniscus from the value corresponding to its central part (in the ap- 
proximation of the force of gravity) at ordinary velocities occur only in a region having an 
extension of the order of 10 -5 cm near the line of three-phase contact [4]. More considera- 
ble distortions of the form of the meniscus at a lyophobic surface are possible for large 
velocities where e + 0 or e § w. For a cylindrical capillary, this method for determining p 
gives 

p = 2 a ( c o s  0 - -  c o s  Oo)/R , ( 2 . 1 )  

where 0 and 0o are, respectively, the dynamic and equilibrium contact angles; p is referred 
to unit area of the cross section of the capillary. 

The method in question can be generalized for the case of a lyophilic surface (0o = 0) 
if cos 0 in (2.1) is replaced by the quantity g E R/Rm: 

p = 2~(~ - -  ~o ) /R ,  ( 2 . 2 )  

where go corresponds to a thermodynamically equilibrium meniscus. For a lyophilic surface, 
go I>1, and for a lyophobic surface, go ~ cos eo < i. For a departing meniscus it is pos- 
sible that ~ > 1 on both lyophilic and lyophobic surface. As in the case of (2.1), expres- 
sion (2.2) is sufficiently exact under the condition that the linear dimensions of the trans- 
itional zone in which the main change in the curvature of the meniscus occurs are small in 
comparison with R m. In this case, the pressure in the liquid directly at the (moving) menis- 
cus can be considered practically hydrostatic, corresponding to Rm, and formulas (2.1) and 
(2.2) describe the deviation of this pressure from the thermodynamically equilibrium value. 

For the model of a stable film, discussed in [2], the following relationship holds: 

ho n ~ t �9 ho n ~o= I ~Rm n_iN T~----I" (2.3) 

With respect to the dependence g(v), on the basis of [2, 3] it can be represented in the form 

h0 
= i + o.~ l(V, v), 

(2.4) 

where f(V, y) is some function of the dimensionless velocity V and the parameter y, deter- 
mined by the concrete model of the film. This function is connected with the coefficients 
Ct~ and C2~, determined in accordance with [3], by the relationship f(V, y) = C~(e, 8)W, 
where C~(=, 8) = C1~(e, 8)C2~(e, 8). The manner of writing C(e, 8) means that each of the 
above-listed coefficients is a function of the parameters ~ and 8- Tables of the coeffi- 
cients CI=(~, 8) for a departing meniscus, calculated for different models of the films, are 
given in [2] [the designation C(e, 8) ~ C1=(e, 8) is used there]. The coefficients C2~(=, 
8) and C~(~, 8) were not calculated in [2]; in [3], they were calculated for an arriving men- 
iscus within the framework of a model of an "ideal" film. 
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Figure 6 gives curves of the function f(V) for a departing meniscus, calculated using 
the models of [2] of stable and unstable "standard" (Y = 0) films for n = 3. For a stable 
film (curve i), the value of f(v) for V = 0 corresponds to ~o. For small values of V the 
dependence f(V) is almost linear; for a stable film it can be approximated by the formula 
f(V) = 0.965 + I.IV. Together with (2.2)-(2.4), this gives 

p ~, 3.4hooV/R ~. 

In the case of an unstable film (curve 2), the dependence f(V) has a discontinuity with a 
critical wetting velocity (Vo) for V > Vo and, as in the case of a stable film, ~ > i. 

We introduce the concept of the "relative resistance of the meniscus" (L,), defined in 
the following manner. Let L be the length of a section of a cylindrical capillary in which, 
with Poiseuille flow (far from the meniscus), the pressure drop is numerically equal to p. 
If the mean velocity of the flow is equal to v, then L = pR=8nov. We define L, - L/R. Then, 
for a departing meniscus, within the framework of a model of a stable film, it holds that 

L ,  = 0.75V 0.643R/ho It(V, ?) -- 0.965 ]/V. 

Using the above approximation for a model of a standard stable film with n = 3, for small 
velocities we obtain 

L, ,~ 0.66(R/ho) 112 = 1.08Rl~(o/A ) l lG. (2 .5 )  

It is worthy of note that, according to (2.5), L, does not depend on viscosity forces, but is 
determined only by the thermodynamic special characteristics of a thin film. This is a con- 
sequence of the linear approximation of the function f(V) for the model in question. The 
dimensionless complex Mo - ho/R entering into (2.5) plays an important role in problems of 
the type under consideration. An evaluation of L, in accordance with (2.5) gives L, ~ 20 
for R ~ i0 ~m. Thus, even in the case of complete wetting, the relative resistance of the 
meniscus is very considerable. This case can serve as a simple illustration of the so-called 
"static hysteresis" of the contact angle. 

The dashed line in Fig. 6 corresponds to a linear extrapolation of dependence f(V) to 
the case of an arriving meniscus (V < 0) moving in a film of thickness ho (for the same mod- 
el). In this case formula (2.5) in a limited interval of velocities remains valid also for 
an arriving meniscus. 'To find the resistance of an arriving meniscus, moving over a lyophil- 
ic surface with an arbitrary value of h,, we require the solution of a problem of the type 
of [3] for models of stable films [2]. 

The above-described method for finding p can be called the "force" model. Another method 
for finding p (the "energy" method) is based on calculation on the dissipation of energy in 
the zone of the line of three-phase contact. The value of the dissipation of energy (Dr), 
arriving in unit time at unit area of the solid surface in the flat part of the film, is 
equal to G=ha/3no, which, together with (l.1), gives for themodels under consideration 

D! = (0,643) t-~ o2H4M~ rs (3~o)-' I , ,  (2 .6)  
__ G 2 3 where I, ,y . At unit length of a cylindrical capillary in the flat region of the film 

there arrives a dissipation D m = 2~RDf. The dissipation Dp for unperturbed Poiseuille flow 
far from the meniscus, arriving in unit time at a unit of length of the cylindrical capillary, 
is equal to 8~qoV =, where v is the mean velocity of the flow over the cross section. The ra- 
tio Dm/D P is 
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Dm/Dp = I . H 3 ( 7 . 8  MoV2)-I., ( 2 . 7 )  

The r a t i o  Dm/D P can  be v e r y  g r e a t ,  as  i l l u s t r a t e d  in  F i g .  4,  which  g i v e s  the  d i s t r i b u -  
t i o n  o f  t h e  v a l u e  o f  I , ,  e n t e r i n g  i n t o  ( 2 . 6 )  and ( 2 . 7 ) ,  a l o n g  t he  X a x i s ,  c a l c u l a t e d  f o r  a 
model  o f  a s t a n d a r d  (y = O) s t a b l e  f i l m  w i t h  n = 3 and V = 1.  The same f i g u r e  g i v e s  the  c o r -  
r e s p o n d i n g  l e v e l s  o f  t h e  P o i s e u i l l e  f l ow in  c a p i l l a r i e s  w i t h  d i a m e t e r s  o f  10,  1,  a n d 0 . 1  ~m 
(dashed  l i n e s  1 - 3 ,  r e s p e c t i v e l y ) .  For a c o m p a r i s o n  w i t h  the  P o i s e u i l l e  d i s s i p a t i o n  Dp, the  
the rmodynamic  p a r a m e t e r s  o f  t h i n  ~ l m s  of  w a t e r  on q u a r t z  were t a k e n  in  a c c o r d a n c e  w i t h  [ 5 ] .  
From F i g .  4 i t  c an  be s e e n  t h a t  in  wide  c a p i l l a r i e s ,  t he  maximum of  the  d i s s i p a t i o n  o c c u r s  
i n  t he  f l a t  p a r t  o f  t he  f i l m ;  i n  t he  r e g i o n  o f  the  maximum D m >> Dp. This  e f f e c t  e x p l a i n s  
the  h i g h  r e l a t i v e  r e s i s t a n c e  o f  t h e  m e n i s c u s  f o r  l a r g e  v a l u e s  o f  R f o l l o w i n g  f rom ( 2 . ~ ) .  

The dependence  I , ( X ) ,  i l l u s t r a t e d  i n  F i g .  4,  was c a l c u l a t e d  in  the  a p p r o x i m a t i o n  o f  a 
f l a t  f i l m .  For  s u f f i c i e n t l y  g r e a t  v a l u e s  o f  y ( c o r r e s p o n d i n g  to X),  t h i s  a p p r o x i m a t i o n  b e -  
comes u n t r u e ,  wh ich  e x p l a i n s  the  a p p a r e n t  i n t e r s e c t i o n  o f  the  c u r v e  of  I , ( X )  w i t h  a l e v e l  
c o r r e s p o n d i n g  to  Dp f o r  a c a p i l l a r y  o f  g i v e n  r a d i u s .  As has  been  n o t e d  above ,  t he  a p p r o x i m a -  
t i o n  o f  a f l a t  f i l m  i s  found to be the  b e t t e r ,  t h e  g r e a t e r  t he  v a l u e  o f  R; t h i s  can  be seen  
a l s o  i n  F i g .  4.  I n  s u f f i c i e n t l y  na r row c a p i l l a r i e s  (R ~ 0 . 0 1  ~m), the  l e v e l  o f  the  P o i s -  
e u i l l e  d i s s i p a t i o n b e c o m e s  so h i g h  t h a t  the  maximum on the  a c t u a l  dependence  In(X)  v a n i s h e s  
a l t o g e t h e r .  I n  t h i s  c a s e  the  r e l a t i v e  r e s i s t a n c e  o f  the  m e n i s c u s  i s  r e l a t i v e l y  s m a l l .  

To c a l c u l a t e  the  e f f e c t i v e  r e s i s t a n c e  o f  t he  m e n i s c u s  from the  d i s s i p a t i o n  o f  e n e r g y  i t  
i s  n e c e s s a r y  to f i n d  the  t o t a l  v a l u e  o f  t h e  d i s s i p a t i o n  D~ in  the  zone o f  the  m e n i s c u s  and 
to s u b t r a c t  f rom i t  t he  v a l u e  o f  D2, c o r r e s p o n d i n g  to the  c o n t r i b u t i o n  o f  P o i s e u i l l e  d i s s i -  
p a t i o n .  The l a t t e r  can be d e t e r m i n e d  f o r m a l l y  in  a d i f f e r e n t  manner ;  however ,  h e r e  t h e r e  
a r i s e s  a d e f i n i t e  d i f f i c u l t y .  We assume t h a t  t he  P o i s e u i l l e  c o n d i t i o n s  f a r  f rom the  m e n i s -  
cus  a r e  c o m p l e t e l y  formed and t h a t  i t  i s  p o s s i b l e  to d e t e r m i n e  the  mean v e l o c i t y  v o f  a " c o n -  
t i n u o u s "  f l o w  i n  some c r o s s  s e c t i o n  x~ o f  t he  c y l i n d r i c a l  c a p i l l a r y  a t  a s u f f i c i e n t  d i s t a n c e  
f rom t h e  m e n i s c u s .  One o f  t h e  f o r m a l  d e f i n i t i o n s  o f  D2 i s  the  f o l l o w i n g .  L e t  the  m e n i s c u s  
be l o c a t e d  to  the  l e f t  o f  the  c r o s s  s e c t i o n  x~ and l e t  q be the  v a l u e  o f  t he  f low in an a r b i -  

t r a r y  c r o s s  s e c t i o n  x to  t he  l e f t  o f  x~(--~ < x < x ) .  I n  v iew of  the  p r e s e n c e  o f  a m e n i s c u s ,  
x~ 

q § 0 as x §  t h e r e f o r e ,  t he  i n t e g r a l  Q = ~ qdx i s  f i n i t e ;  i t  c o r r e s p o n d s  to  t h e  t o t a l  

volume o f  l i q u i d  d i s p l a c e d  a t  a g i v e n  moment o f  t ime w i t h  r e s p e c t  t o  t he  w a l l s  o f  the  c a p i l -  
l a r y  to t h e  l e f t  o f  t h e  c r o s s  s e c t i o n  x~. For u n p e r t u r b e d  P o i s e u i l l e  f l ow w i t h  a mean v e l o c -  
i t y  v ,  t h i s  volume o f  l i q u i d  i s  d i s p l a c e d  in  a s e c t i o n  o f  f i n i t e  l e n g t h  L = Q/~R2v. We now 
d e t e r m i n e  D2 as D2 E DpL, where Dp = 8WnoV 2. In  p r a c t i c e ,  v i s  e q u a l  to the  e x p e r i m e n t a l l y  
o b s e r v e d  v e l o c i t y  o f  t he  m e n i s c u s .  The d e t a i l s  o f  the  f o r m a l  d e f i n i t i o n  o f  D2 may be found 
e s s e n t i a l  i n  c a s e s  where the  l e v e l  o f  t h e  P o i s e u i l l e  d i s s i p a t i o n  i s  r e l a t i v e l y  h i g h ,  f o r  e x -  
ample ,  i n  na r row c a p i l l a r i e s  and f o r  l a r g e  v e l o c i t i e s .  

The v a l u e s  o f  q and D~ a r e  found d i r e c t l y  by s o l u t i o n  o f  the  e q u a t i o n s  o f  mo t ion  in  the  
s e c t i o n - ~  < x ~ < x ~ .  In  t he  a p p r o x i m a t i o n  of  a f l a t  f i l m ,  q = 4~Rh~G/3no, and f o r  the  models  

X~ 

unde r  c o n s i d e r a t i o n  Dt = 2~R y DfdX, where  Df i s  d e t e r m i n e d  in  a c c o r d a n c e  w i t h  ( 2 . 6 ) .  

F i n d i n g  the  d i f f e r e n c e  D = Dt -- D2, we can f o r m a l l y  d e f i n e  the  dynamic r e s i s t a n c e  o f  the  men- 
i s c u s  as  t h e  f o r c e  F d e v e l o p i n g  the  power D = Fv. At u n i t  a r e a  of  the  c r o s s  s e c t i o n  o f  the  
c a p i l l a r y ,  t h e r e  a r r i v e s  the  a d d i t i o n a l  p r e s s u r e  o f  the  m e n i s c u s  

p = D/~R~v. (2.8) 

C a l c u l a t i o n  o f  p u s i n g  f o r m u l a s  (2 .2 )  and (2 .8 )  f o r  a c a p i l l a r y  w i t h  R ~ 1 ~m w i t h i n  the  
f ramework o f  a model o f  an  u n s t a b l e  f i l m  g i v e s  c l o s e  r e s u l t s .  This  i n d i c a t e s  t h a t  b o t h  o f  
t he  p r o p o s e d  methods  f o r  d e t e r m i n a t i o n  o f  p f o r  s u f f i c i e n t l y  wide c a p i l l a r i e s  a r e  e s s e n t i a l l y  
a d e q u a t e .  I n  t h i s  c a s e  the  f i r s t  method must be p r e f e r r e d  as  s i m p l e r .  However,  the  second  
method i s  more r i g o r o u s  and must be p r e f e r r e d  f o r  n a r r o w e r  c a p i l l a r i e s  (R ~ 0 .1  ~m), where 
the  d i m e n s i o n s  o f  the  zone o f  t r a n s i t i o n a l  c u r v a t u r e  become oomparable  w i t h  the  d imens ion  o f  
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the meniscus and the use of R m as a characteristic parameter of the meniscus loses its mean- 

ing. 
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FINITE-AMPLITUDE INTERNAL WAVES AT AN INTERFACE 

BETWEEN TWO HEAVY LIQUIDS 

S. I. Plaksin UDC 532.591 

The problem of steady-state waves at an interface between two heavy liquids has been 
discussed in several papers (see, e.g., [i, 2]). Here a method is proposed on the basis of 
reduction of the problem to the solution of a nonlinear conjugation problem. 

Let us consider the flow of two incompressible liquids of different densities in a grav- 
ity field with specified velocities at an infinite distance from the interface. We consider 
the motion to be irrotational and assume that the interface line l, which moves at a certain 
horizontal velocity U without changing shape, is a Lyapunov curve with period X. We set up 
a coordinate system OXY moving in the direction of wave propagation with velocity U. We as- 
sume that the absolute particle velocity of the liquia at the interface differs from the wave- 
propagation velocity. Under this condition the waves are nonbreaking [3]. 

We place the origin at the average level of the liquid interface line, directing the 
axis OX along the horizontal in the direction of absolute motion of the line Z, and the axis 
OY along the vertical upward through one of the wave crests (Fig. I). By ~k, k = i, 2, we 
denote the domains with period X occupied by the upper and lower liquids. We introduce the 
complex variables Z k = X k + iY in ~k' corresponding to the complex-valued potentials W k = 
~k + i~k and complex velocities V k = dWk/dZ k. We denote the absolute velocities of the li- 
quids at an infinite distance from the interface by Vk~ and the densities by pk(p~ < P2). 

We transform to dimensionless variables, putting V k = VkF~, Z k = ZkX/2w , and W k = 
WkV1~X/2w. 

Under the stated assumptions the problem reduces to the determination of the wave pro- 
file and functions v k that are analytic in ~k and satisfy the kinematic and dynamic condi- 
tions at Z as well as the following condition at an infinite distance from the interface: 

I m  (z) = [mllvl(z)[" - -  (1 -k ml)[v~(z)["-I Fr /2? :  § c, z ~ l ;  

u I -+I -- y, !/I -+oo; v~ -+5 -- y, !/~ -+--co, 

(i) 

where Fr = U22~/gX; ml = p,/(P2 -- P~); y = U/V,~; 6 = V==IV:~; gis the acceleration of grav- 
ity; and c is a certain functional. 

We investigate the auxiliary plane of the complex variable u. Let the domain D + be the 
interior of the unit disk with center at the point u = 0 and D- the exterior of the disk with 
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